Decomposing multivariate polynomials with structured low-rank matrix completion
نویسنده
چکیده
We are focused on numerical methods for decomposing a multivariate polynomial as a sum of univariate polynomials in linear forms. The main tool is the recent result on correspondence between the Waring rank of a homogeneous polynomial and the rank of a partially known quasi-Hankel matrix constructed from the coefficients of the polynomial. Based on this correspondence, we show that the original decomposition problem can be reformulated as structured low-rank matrix completion (or as structured low-rank approximation in the case of approximate decomposition). We construct algorithms for the polynomial decomposition problem. In the case of bivariate polynomials, we provide an extension of the wellknown Sylvester algorithm for binary forms.
منابع مشابه
Computing Approximate GCD of Multivariate Polynomials by Structure Total Least Norm
The problem of approximating the greatest common divisor(GCD) for multivariate polynomials with inexact coefficients can be formulated as a low rank approximation problem with Sylvester matrix. This paper presents a method based on Structured Total Least Norm(STLN) for constructing the nearest Sylvester matrix of given lower rank. We present algorithms for computing the nearest GCD and a certif...
متن کاملFast Low Rank Approximation of a Sylvester Matrix by Structured Total Least Norm
The problem of approximating the greatest common divisor(GCD) for polynomials with inexact coefficients can be formulated as a low rank approximation problem with a Sylvester matrix. In this paper, we present an algorithm based on fast Structured Total Least Norm(STLN) for constructing a Sylvester matrix of given lower rank and obtaining the nearest perturbed polynomials with exact GCD of given...
متن کاملHigher rank numerical ranges of rectangular matrix polynomials
In this paper, the notion of rank-k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for ϵ > 0; the notion of Birkhoff-James approximate orthogonality sets for ϵ-higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed denitions yield a natural genera...
متن کاملStructured Low Rank Approximation of a Bezout Matrix
The task of determining the approximate greatest common divisor (GCD) of more than two univariate polynomials with inexact coefficients can be formulated as computing for a given Bezout matrix a new Bezout matrix of lower rank whose entries are near the corresponding entries of that input matrix. We present an algorithm based on a version of structured nonlinear total least squares (SNTLS) meth...
متن کاملStructured low-rank matrix completion for forecasting in time series analysis
In this paper we consider the low-rank matrix completion problem with specific application to forecasting in time series analysis. Briefly, the low-rank matrix completion problem is the problem of imputing missing values of a matrix under a rank constraint. We consider a matrix completion problem for Hankel matrices and a convex relaxation based on the nuclear norm. Based on new theoretical res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014